Roles of *Xylella fastidiosa* pili in motility and biofilm formation:regulation via a putative chemosensory system

Thomas Burr, Luciana Cursino-Parent, Yaxin Li, Leonardo De La Fuente, Paulo Zaini, Cheryl Galvani and Harvey Hoch, Department of Plant Pathology, Cornell University, NYSAES, Geneva, NY 14456

Genes Associated with Pili Biogenesis and Function in *X. fastidiosa*

At least 50 genes participate in the biogenesis and function of type I and type IV pili in *Xylella*.

Modified from: http://gib.genes.nig.ac.jp/single/index.php?spid=Xfas_TEMECULA1

Type I and Type IV Pili Have Separate Functions

- Adhesion to surfaces
- Biofilm formation
- Speed of movement in plant
- Aggregation

Regulation of Pili, Biofilm and Twitching Motility in *Xylella*

- pilR/pilS (Burr, Hoch group, Li et al. 2007)
 - Two component regulatory in several bacteria
 - Loss of motility and enhanced biofilm
- rpf (Lindow group, Newman et al. 2004)
 - Biofilm/vector relations and disease expression
- rpnO (Marques group, da Silva Neto et al. 2007)
 - Regulation of *pil* genes (*pilAI*) dependent on σ^{54}
 - Enhanced biofilm
- gacA and algU (Cooksey group, Shi et al. 2007)
 - Biofilm regulation
- · Chemosensory cluster
 - Many bacteria, flagella and pili-mediated motility

Components of the Chemosensory Cluster of *X. fastidiosa*

Gene Id	Predicted protein	Synonym	Size (aa)	MW (kDa)	pl
XP0871	PilG	CheY	138	15	9.3
XP0872	Pill	CheW	176	19	6.1
XP0873	PilJ	MCP	680	72.7	5.6
XP0874	PilL	CheA	1725	190	4.7
XP0875	ChpB	CheB	389	41.4	4.5
XP0876	ChpC	CheW	156	17.1	4.6
XP1715	PilH	CheY	128	14	6.3
XP1757	ChpY	CheY	566	63.7	5.1

Model of Che Regulation in Xylella

PilJ (MCP)
PilH (coupling protein)
PilL (histidine kinase)

ChpY (response regulator) affecting pili extension/retraction?

PilL and ChpY are Essential for Twitching and Biofilm Formation

- The pilL mutant (XP0874) is twitching-minus and has a greatly reduced biofilm phenotype.
 - No cell movement in micro-fabricated flow chambers
- The chpY mutant (XP1757) is reduced in twitching and has a strongly-enhanced biofilm.
 - Reduced twitching motility in flow chambers
 - There are 20 proteins with CheY domains in X. fastidiosa.
- It was possible to complement the chpY mutant by cloning in pBBR1MCS-5.

PilL (XP0874) is Characteristic of CheA **Histidine Kinase** G H I 938928-1940628 (HATPase) autocatalytic Xf Temecula chromos Histidine kinase domain ChpY for ATP binding **CheY docking domain CheW mediates interaction** chpB C With CheA 4 (Hpt) histidine-containing phosphotransfer domains Hpt1

Complemented *chpY*

Effect of *pilL* and *chpY* on Pili and Colony Fringe

WT

pilL and chpY mutants

Complemented chpY

Both *pilL* and *chpY* mutants have type I and type IV pili.

*Whether pili numbers are reduced or enhanced remains to be determined

PilL and ChpY Affect Biofilm Production

Loss of ChpY function greatly enhances biofilm. GGDEF and EAL domains affect c-di-GMP level; second messenger for biofilm regulation.

Model of Che Regulation in Xylella

X. fastidiosa has a single MCP, PilJ

MCP prototype

- •MCPs (methyl-accepting chemotaxis proteins) initiate the cascade of signal transduction in response to diverse chemical and physical environmental stimuli.
- •The occurrence of a single MCP in the genome of *Xylella* and its presence in the chemosensory cluster involved in motility calls for further investigations to identify the signal(s) responsible to trigger this cascade and affect motility.

Conclusions and Significance

- X. fastidiosa is unusual in that it has type I and type IV pili that play roles in biofilm and aggregate formation and in motility.
- *X. fastidiosa* employs type IV pili to move against transpiration stream in grapevines.

Conclusions and Significance

- Regulation of pili biogenesis, twitching and biofilm formation is complex and includes multiple systems.
- Understanding regulation of activities such as biofilm development and motility, that are believed to be critical to disease, offers possible targets for control strategies

Conclusions and Significance

- A chemosensory system in X. fastidiosa is essential for twitching motility and affects biofilm formation.
- Identification of components of the Che system and associated environmental signals may provide a novel means of disease control.
- Effect of Che knockouts on disease?